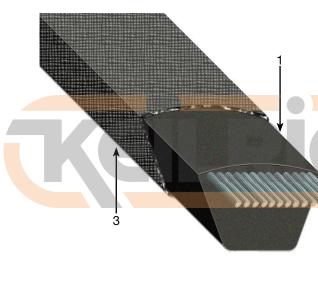


V-BELTS
Rubber V-belts


INTRODUCTION TO V-BELTS

Megadyne V-belts have been used for decades in the most different industries and applications, offering drive solutions to customers all over the world.

Applied technology guarantees such a dimensional precision in V-belts which allows them to be suitable for multiple transmissions. This dimensional stability continues also during belt use.

The variety of belt sizes available allows the application of Megadyne V-belt in a wide range of drive applications, such as: machine tools industrial washing machines textile machines continuous paper machines high power mills

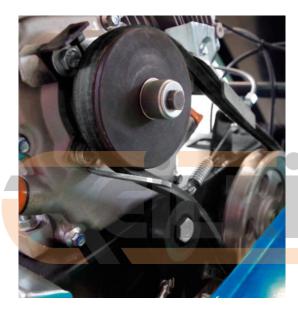
The main V-belt components are:

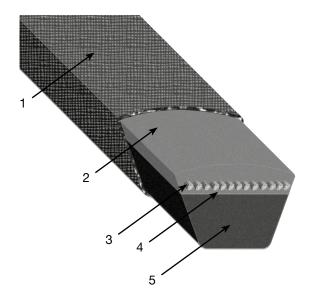
stone crushers

- 1) Belt body made of a special rubber compound which provides, due to its excellent mechanical characteristics, high transmission efficiency and assures a minimum rubber wear off;
- 2) Tensile member consisting in high-strength low-stretch cords, which grant length stability over the belt life time;
- 3) Fabric jacket or cover made of fabric, protecting the tensile member and permitting the use of back side idler.

MECHANICAL AND CHEMICAL FEATURES

- · smooth starting and running
- · wide range of driven speed
- low maintenance
- high efficiency
- extremely wide horsepower ranges
- · dampen vibration between driver and driven pulleys
- · silent operations


- long life service
- easy installation
- reduction in drive dimension
- working temperature range from -30°C to +80/90°C (see details in family pages)
- · oil and heat resistance
- antistatic properties


MEGAMATCH MATCH

All V-belts carrying the MEGA MATCH logo are made and supplied according to the matching set tolerances and limits indicated by the relevant international standards (ISO,RMA, etc)

INTRODUCTION TO V-BELTS

WRAPPED BELTS

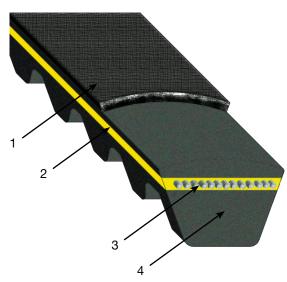
EXTRA

Extra belts were designed to offer durable and reliable performances on light and medium-duty drives. They represent an affordable solution for transmission systems of all industrial sectors.

OLEOSTATIC

Oleostatic rubber belts are developed with high resistant tensile elements, they are characterised by high performances, length stability during belts life, conductivity, oil and heat resistance. They are particularly suitable for centrifugal pumps, compressor, tool machines, generators, high power mills and stone mills.

OLEOSTATIC GOLD


Different materials and design features, together with an improved production process, have led to the development of a new class of higher rated wrapped V-belts. The new OLEOSTATIC GOLD V-belts products family can operate in a wide range of industrial applications, within a large spread of load capacities and speeds — offering rated performance from 100 to 8,000 RPM and power capability from 1 to 400 kW, meanwhile granting large cost advantages for the end users.

Oleostatic Gold structure:

- 1) FABRIC: Double cover ply CR Dip.
 - A reinforced, double fabric cover is plied around the belt to protect it against contamination and moisture. Its increased flexibility allows the belt to bend more easily around the smallest pulleys with far less strain on the fabric, while assuring a smoother running drive.
- 2) TOP CUSHION: SBR compound + Fibers
- 3) TENSILE CORD: H.T. Polyester
 - The tensile section is made up of a multiple number of highstrength, low elongation polyester cords, completely embedded in the adhesion layers, to enhance resistance to tension and flex-fatigue. Each cord is individually and specially coated to secure a long-lasting bond with the surrounding rubber and to grant a longer operational lifetime. In addition the belt requires significantly less retensioning and take-up due to its cord's consistent length stability. Longer belt life means less frequent replacement, less downtime and lower maintenance costs.
- 4) BOTTOM CUSHION: SBR compound + Fibers
- 5) BODY COMPOUND: Polycloroprene (CR) based

INTRODUCTION TO V-BELTS

RAW EDGE

LINEA-X

These belts have been specifically developed to run where small pulleys diameters and high transmission ratios put a limit to the use of wrapped belts of the same section.

Compared to wrapped belts, the LINEA-X family offers important improvements, like specific compounds and special production technology. In particular the transverse orientation of the fibers improves the cord support capacity of the body section and reinforces its transverse rigidity, while maintaining, (due to the cogged profile and the precision-ground sidewalls) the highest longitudinal flexibility and running stability. These characteristics guarantee an excellent structure with advantages such as: high transmission ratios, improved grip and resistance to continuous bending.

LINEA GOLD

The NEW generation of raw edge belts

New materials, advanced design features and an innovative production process has led MEGADYNE to develop a new generation of raw edge V-belt drives that outperform, in a wide range of industrial applications, all the previous drives equipped with standard raw edge belts, granting large cost advantages for the end users and greater design flexibility for the engineers. The belt has a narrow cross section and a raw edge construction, based on a new EPDM rubber compound which can outstand chemically aggressive environments, ageing, ozone, UV and heat.

Linea Gold structure:

1) BACKSIDE FABRIC

A textile fabric is plied on the belt backside to protect it against contamination and moisture.

Its flexibility gives the belt excellent reversed bending properties when backside idlers are used and protects the belt against wear.

2) ADHESION LAYERS

An innovative, colored, EPDM compound located immediately above and below the belt cords, guarantees the best possible bonding with the under cord body material.

3) TENSILE CORD

The tensile section is made up of a multiple number of high-strength, low elongation polyester tensile cords which are completely embedded in the adhesion layers and vulcanized as one solid unit to enhance resistance to tensile and flex-fatigue forces. On request, for special extreme requirements, aramid or glassfibre cords are also available. 4) BODY COMPOUND

A newly developed EPDM compound, with high-performance fibers embodied in the rubber matrix, provides to the belt with superior abrasion and wear resistance. The transversal orientation of the fibers improves the cord support capacity of the body section and reinforces its transversal rigidity, while maintaining, in connection with the cogged profile and the precision-ground sidewalls, the utmost longitudinal flexibility and running stability.

PRODUCT RANGE

SECTIONS Ζ Ε Α 20 В 25 С 45

50

D

Classical wrapped V-belts

(Extra - Oleostatic - Oleostatic Gold)

SECTIONS

AXвх CX

Classical raw edge V-belts

(Linea Gold)

SECTIONS

SPZ SPA SPB SPC

SECTIONS

XPZ XPA XPB XPC

Narrow wrapped V-belts DIN

(Extra - Oleostatic Gold)

(Linea-X - Linea Gold)

SECTIONS

3V 5V 8V

Narrow wrapped V-belts RMA

(Oleostatic)

SECTIONS

36x12 13x6 17x6 37x10 42x13 21x7 22x8 47x13 52x16 26x8 55x16 28x8 30x10 65x20

SECTIONS

SECTIONS

RSPC

R3V

R5V

R8V

R3VX

R5VX

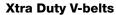
RA

RB

RC

RSPZ

RSPA


RSPB

XDV2-38 XDV2-48 XDV2-58

Variable speed V-belts

(Varisect)

70x20

(XDV2)

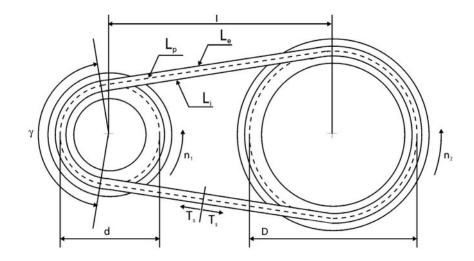
SECTIONS

32x10

AA

ВВ CC

(Pluriband)


Banded V-belts

Double V-belts

(Esaflex)

TECHNICAL CALCULATION

Symbol	Unit	Definition	Symbol	Unit	Definition
C _y		correction factor C _y	L _p	mm	pitch length (effective)
C		correction factor C _L	n,	RPM	speed of smaller pulley (faster)
C _c		correction factor C _c	n ₂	RPM	speed of bigger pulley (slower)
d	mm	pitch diameter of smaller pulley	P	kW	power to be transmitted
D	mm	pitch diameter of bigger pulley	P _a	kW	actual power of the transmission
1	mm	theoretical center distance	P _b	kW	basic performance of a single belt
l _e	mm	effective center distance	P _c	kW	corrected power
i		transmission ratio	P_d	kW	difference to Pb due to K≠1
Ľ	mm	calculated pitch length	Q		number of belts
L _e	mm	external length $(L_p + \Delta_e)$	T _s	N	static belt tension
L _i	mm	internal length $(L_p - \Delta_i)$	V	m/s	peripheral belt speed
			γ	0	arc of contact

BELT SECTION

Necessary data for selection of the belt section:

P = power to be transmitted in kW

 n_1 = speed in RPM of the smaller pulley

 n_2 = speed in RPM of the bigger pulley

It is necessary to correct the power P by a coefficient C_c (see table 1 page 6) which considers into account the actual operating conditions.

Corrected power $\mathbf{P}_{_{\mathrm{C}}}$ is given by:

$$P = P \cdot C$$

The graphs gives a guiding criterion for the section of the belt.

TRANSMISSION RATIO

Transmission ratio is calculated as follows:

$$i = \frac{n_1}{n_2} = \frac{D}{d}$$

where D is the pitch diameter of larger pulley and d is the pitch diameter of the smaller pulley.

TECHNICAL CALCULATION

Peripheral speed of the belts is determined by

$$v = \frac{d \cdot n_1}{19100}$$

If the drive being calculated is of the V/flat type (one V pulley and one flat pulley) it is necessary to find the corresponding pitch diameter of the flat pulley.

The pitch diameter of the flat faced pulley is obtained by increasing its external diameter by the amount in millimetres shown in the following table:

Z	A	В	С	D	E	19	20	25
8	10	14	20	24	33	16	15	19

PITCH LENGTH OF THE BELT AND CORRECT CENTER DISTANCE

Whenever the shaft center distance I is not predetermined by the layout of the drive, the optimum distance may be chosen as follows:

$$1 < i < 3$$
 $1 \ge \frac{(i+1) \cdot d}{2} + d$

The pitch length is determined by:

$$L' \sim -2 \bullet I + 1,57 \bullet (D+d) + \frac{(D-d)^2}{4I}$$

From the list of belt sizes, should be selected the belt pitch length L_p nearest to the value of L' above calculated. Since $L' \neq L_p$ the center distance "I" may be varied by subtracting half L' - L_p . Therefore the effective center distance of the drive will be:

$$I_{e} = I - \frac{(L'-L_{p})}{2}$$

NUMBER OF BELTS

The basic performance P_b is the power which a single belt transmits under the following conditions:

• i = 1

This configuration corresponds to 180° arc of contact belt on both pulleys;

• i ≠ 1

The difference of kW-rating P_d is the power which the belt transmits in excess of P_b because $i \neq 1$ in service conditions. The actual kW-rating P_a is the power which the belt transmits in operating conditions and is obtained by means of:

$$P_a = (P_b + P_d) \times C_a \times C_L$$

Table 4 (see belt family pages) gives the values of P_b according to RPM and d (smaller diameter) and the values of P_d according to RPM and i.

TECHNICAL CALCULATION

Table 2 (bottom of this page) and 3 (see belt family pages) give values of the coefficients C_{γ} and C_{L} taking into account the operating conditions.

The arc of contact g of the belt on the smaller pulley is determined by:

$$\gamma = 180^{\circ} - 57 \bullet \frac{D - d}{I_{e}}$$

The number of belts Q necessary for the transmission of the power P_c is determined by:

$$Q = \frac{P_c}{P_a}$$

The number of belts actually is obtained in general by rounding up Q to the next highest whole number.

TABLE 1 - TYPE OF MOTOR

(1) (2)

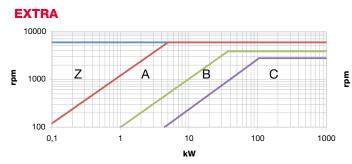
AC electric motors: high slip, squirrel cage, synchronous: DC electric motors: parallel excitation;

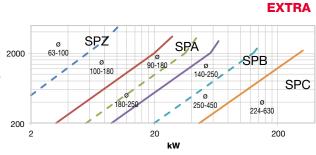
multi-cylinder internal combustion engines; gas or steam turbines.

AC electric motors: high torque, high slip, single phase, wound rotor, commutator;

DC electric motors: series and compound excitation; single-cylinder internal combustion engines with direct coupling or with countershaft; steam engines.

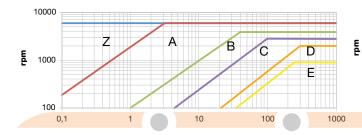
	Daily operating hour								
Applications	0-8(1)	8-16(1)	16-24(1)	0-8(2)	8-16(2)	16-24 ⁽²⁾)			
Light use									
Centrifugal pumps and compressors, belt conveyors, (light materials) fans and pumps up to 7,5 kW.	1,1	1,1	1,2	1,1	1,2	1,3			
Normal use Shears for steel sheet presses, belt and chain conveyors, (heavy material) sifters, generator sets, machine tools, kneading machines, industrial washing machines, printing presses, fans and pumps over 7,5 kW.	1,1	1,2	1,3	1,2	1,3	1,4			
Heavy use Hammer mills, piston compressors, belt conveyors for heavy loads, lifters, textile ma- chines, continuous paper machines, piston and dredging pumps, ripping saws.	1,2	1,3	1,4	1,4	1,5	1,6			
Extra heavy use High power mills, stone crushers, calendars, mixer, cranes, diggers, dredgers.	1,3	1,4	1,5	1,5	1,6	1,8			

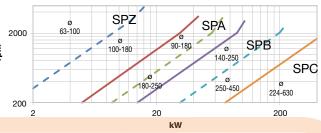

TABLE 2 - Correction factor C γ (T/T=V/V drives; T/P=V/Flat drives; γ =arc of contact on the smaller pulley)


	γ	180°	175°	170°	165°	160°	155°	150°	145°	140°	135°	130°	125°	120°	115°	110°	105°	100°	90°
•	T/T	1	0,99	0,98	0,96	0,95	0,93	0,92	0,90	0,89	0,87	0,86	0,84	0,82	0,80	0,78	0,76	0,74	0,69
Cγ	T/P	0,75	0,76	0,77	0,79	0,80	0,81	0,82	0,83	0,84	0,85	0,86	0,84	0,82	0,80	0,78	0,76	0,74	0,69

WRAPPED V-BELTS SELECTION CHARTS

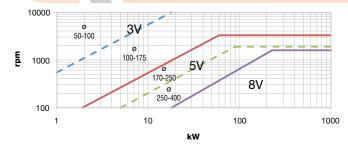
Classical wrapped V-belts


Narrow wrapped V-belts DIN

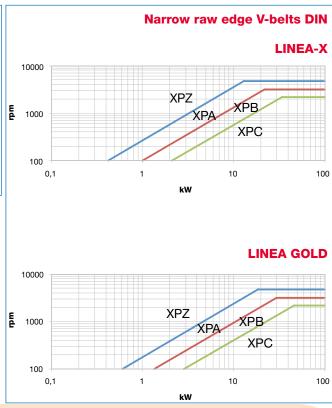


OLEOSTATIC GOLD

OLEOSTATIC GOLD



Narrow wrapped V-belts RMA


Narrow wrapped v-beits Rivia

OLEOSTATIC

RAW EDGE V-BELTS SELECTION CHARTS

KEILRIEMEN.AT

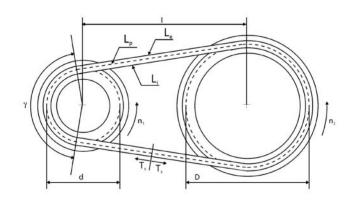
CALCULATION EXAMPLE

EXAMPLE

P = 22 kW

 $n_1 = 1200 \text{ RPM}$

 $n_2 = 660 \text{ RPM}$


Textile machine operating 12 hours a day

Type of motor: ac electric motor, normal torque

The correction coefficient is 1,3 (see table 1)

The corrected power is:

$$P_c = 22 \cdot 1.3 = 28.6 \text{ kW}$$

BELT SELECTION

From selection charts, for $P_c = 28,6$ and $n_1 = 1200$ RPM it is appropriate to choose section B.

TRANSMISSION RATIO

The transmission ratio can be calculated as follows:

$$i = \frac{n_1}{n_2} = \frac{1200}{660} = 1,82$$

Considering diameter d = 250 mm for the smaller pulley, the pitch diameter of the larger pulley is:

$$D = i \cdot d = 1,82 \cdot 250 = 455 \text{ mm}$$

Peripheral speed of the belts is determined by

$$v = \frac{d \cdot n_1}{19100}$$
; $v = \frac{0,052 \cdot 250 \cdot 1200}{19100} = 15,7 \text{ m/s}$

BELT PITCH LENGTH AND CORRECT CENTER DISTANCE

For i = 1,82 (i.e. 1 < i < 3) the center distance is given by:

$$l \ge \frac{(i+1) \cdot d}{4} + d$$
 so $l = 610 \text{ mm}$

The pitch length of the belt is determined by:

$$\begin{aligned} L' &= 2 \bullet I + 1,57 \bullet (D + d) + \frac{(D - d)^2}{4 \bullet I}; \\ L' &= 2 \bullet 610 + 1,57 \bullet (455 + 250) + \frac{(455 - 250)^2}{4 \bullet 610} = 2344 \text{ mm} \end{aligned}$$

From the list of belt sizes (see table on belt family pages), should be selected the belt pitch lenght L_p nearest to the value of L' previously calculated.

The center distance "I" may be varied by subtracting half L'-L_n. Therefore the effective centre distance of the drive will be:

$$le = l - \frac{L' - L_p}{2}$$

Having selected **Oleostatic Gold B 91** ($L_{_{D}}$ = 2355 mm), the actual shaft center distance is calculated by:

$$le = 610 - \frac{2344 - 2355}{2} = 615,5 \text{ mm}$$

From table 4 of B section (d=250 mm; 1200 RPM; K=1,82):

$$P_b = 11,57 \text{ kW}$$

$$P_{d} = 0.48 \text{ kW}$$

The arc of contact γ of the belt on the smaller pulley is determined by:

$$\gamma = 180^{\circ}\text{-}57 \bullet \frac{\text{D-d}}{I_{_{0}}} = 180^{\circ}\text{-}57 \bullet \frac{455\text{-}250}{616} \cong 161^{\circ}$$

From table 2 for $\gamma = 161^{\circ}$

$$C_{\gamma} = 0.95$$

From table 3, pag 19 for Oleostatic Gold B 91 belt

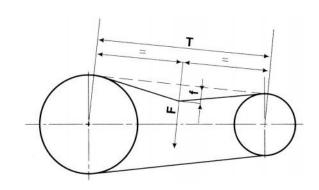
$$C_1 = 1,00$$

Therefore:

$$P_a = (11,57+0,48) \cdot 0,95 \cdot 1,00 = 11,45 \text{ kW}$$

The number of belts Q necessary for transmission of the power $\mathrm{P}_{\scriptscriptstyle \mathrm{c}}$ is established by:

$$Q = \frac{P_c}{P_a} = \frac{28.6}{11.45} = 2.5$$


Round up to 3 belts Oleostatic Gold B 91.

BELT TENSIONING RECOMMENDATION

The correct belt assembling tension is given by:

$$Ts = 500 \bullet \frac{2,5 - C_{\alpha}}{C_{\alpha}} \bullet \frac{P_{C}}{Q \bullet v} + m \bullet v^{2}$$

Symbol	Unit	Definition
C _a		arc correction factor
m	kg/m	belt linear mass (see belt family page)
P _c	kW	corrected power
Q		number of belts
T _s	N/strand	static belt tension
V	m/s	peripheral belt speed
α	0	arc of contact

Arc corretcion factor:

α [°]	180	174	169	163	157	151	145	139	133	127	120	113	106	99	91	83
C_{α}	1,00	0,98	0,97	0,96	0,94	0,93	0,91	0,89	0,87	0,85	0,82	0,80	0,77	0,73	0,70	0,65

LENGTH MEASURING AND GROOVE PULLEYS

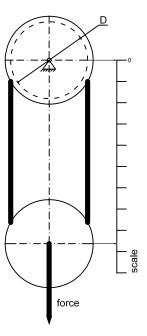
BELT LENGTH MEASURING

The first and easiest way for measuring the V-belt length is by placing the belt on a flat surface, giving the belt a circular shape and finally measuring the internal length L_i by means of a measuring tape. Adding Δ_i and after Δ_e (see belt families pages) to this length, it's possible to calculate respectively L_p and L_e .

This measuring way is not very precise, even if practically easy and feasible with a tape only.

The bolk is not an O multiple and single for the formity and single for the bolk and booking the correct.

The belt is put on 2 pulleys, specific for the family and size of the belt and having the same pitch diameter. One is fixed while the second can move on a linear graduated scale.


Depending on the belt, a certain force is applied to the second pulley in order to put the complete system under tension. The correct force is tabled the relevant standards referring to the belt family.

To stabilize the system, at least 3 rotations of the pulleys are required.

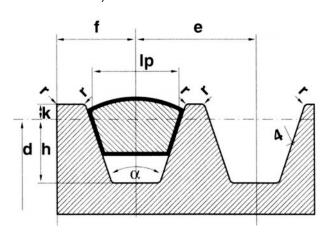
The pitch length $L_{_{\rm D}}$ is given by the pulleys pitch diameter D and center distance a in the formula:

$$L_p = 2 a * \pi_D$$

Subtracting $\Delta_{_{\! e}}$ and adding $\Delta_{_{\! e}}$ (see belt families pages) it's possible to calculate respectively L, and L $_{_{\! e}}$.

KEILRIEMEN.AT

GROOVE PULLEYS


Groove pulleys for V-belts must be manufactured with care and be made of good quality steel or engineering cast iron. It is most important that the flanks of the grooves shall be perfectly smooth and show no visible sign of machining, that all sharp corners of the grooves shall be rounded off and chamfered and that the external diameter of the face shall be constant overall.

All pulleys must also be statically balanced.

Dynamic balancing is required for speeds over 30 m/second.

Profile and dimension of pulley should be in accordance to DIN 2211, BS 3790, ISO, RMA depending on the belt relevant standard.

In the drawing are shown the main characteristics and dimensions of groove pulleys for V-belts (example referring to Oleostatic belts).

Ip = pitch width

k = minimum height of groove above the pitch line

h = minimum depth of groove below the pitch line

 α = groove angle

d = pitch diameter

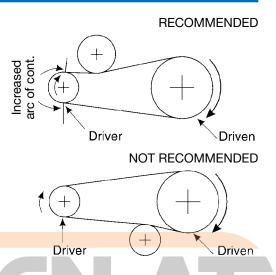
e = distance between the axes of the sections of two grooves

f = distance between the axis of the section of the outer groove and the rim of the pulley

LENGTH MEASURING AND GROOVE PULLEYS

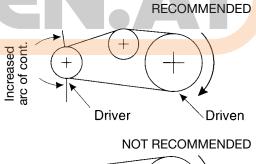
The use of idlers in V-belt drives is not recommended.

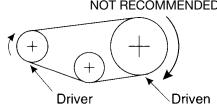
However, due to particular drive requirements and limitations, use of idlers may be absolutely necessary.


For using idlers, requirements are as follows:

- 1. Providing take-up for fixed center drives.
- 2. Turning corners (as in mule pulley drives).
- 3. Breaking up long spans where belt whip may be a problem.
- 4. Maintaining tension, when idler is spring-loaded or weighted.

A power corretcion (see below) is required.


OUTSIDE IDLER


- 1. An outside idler should be at least one and one-third times as large as the smallest pulley on the drive, unless drive has unusually large pulleys.
- 2. An outside idler must be flat and without any crown.
- 3. To find the face width of a flat idler (between flanges if flanged) add 1 $\frac{1}{2}$ times the nominal belt top width to the face width of the grooved pulley used.
- 4. An outside idler pulley should be located as close as possible to the preceding pulley. This is because V-belts move back and forth slightly on a flat pulley and locating it as far away from the next pulley minimizes the possibility of the belt entering that pulley in a misaligned condition.
- 5. Idler pulleys should be located only on the slack side of a drive.

INSIDE IDLER

- 1. An inside idler will decrease the arc of contact.
- 2. An inside idler should be at least as large as the smallest pulley on the drive, unless the drive has unusually large pulleys.
- 3. An inside idler should better be a grooved pulley. In alternative, flat pulleys can be used.
- 4. A grooved inside idler pulley may be located anywhere along the span, preferably so that it gives nearly equal arcs of contact on the two adjacent pulleys.
- 5. Idler pulleys should be located only on the slack side of a drive.

RATED POWER CORRECTION

Because idlers impose an additional bending stress point on the V-belt, the transmittable power is reduced.

The smaller the idler diameter, the greater the bending stress, which results in a greater reduction in rated power and belt life.

To compensate this loss, the design power of the drive must be increased.

The following table gives the approximate correction factors according to the number of pulleys in the drive.

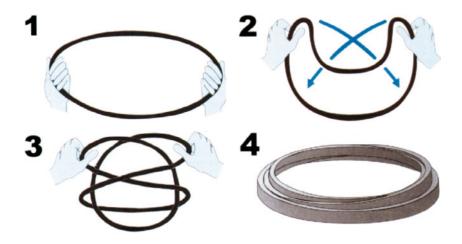
The normal power rating should be multiplied by this factor.

No. of pulleys in drive23 (one idler)4 (two idlers)Rating Correction Factor1,000,900,80

Note:

As stated, the above listed factors are only approximate values and apply only when idler diameters and their location is in accordance with the above recommendations.

STORAGE MAINTENANCE AND USEFUL ADVICES


HOW TO STORE BELTS

In order to store V-Belts correctly, it is advisable to hang them on "saddles" or on large-diameter tubular brackets. This diameter should be at least ten times the height of belts cross section.

Long belts can be stacked to save space, provided that they are correctly coiled (see figures).

Short belts can be stored on shelves, but be aware that stacks should not be more than 300 mm high, as the bottom belts may be otherwise deformed.

Finally, hooks and nails are unsuitable for suspending the belts.

CONDITIONS OF STORAGE

Rubber V-belts can be stored for several years without causing any performance or reliability loss.

For a correct storage, some prescription have to be taken into account.

- Environment

The storage premises should be cool, dry and well ventilated but not draughty.

- Temperature

Storage temperature should be within +5 and +30°C.

Lower temperatures causes stiffening in the belt but are accepted in the storage. In order to avoid damages in the start-up, it becomes necessary to heat the belt up to around 20° before making it run on the machine.

Higher temperatures due to heating are to be avoided. Distance from heating sources should be at least 1 meter.

- Light

Belts should be protected from light, especially direct sunlight and artificial light with high ultraviolet rays (neon light).

- Ozone

Equipments generating ozone, like high voltage electrical machines or fluorescent light sources, should not be installed in the storage.

Also combustion gases and vapours, that can cause ozone, should be avoided.

- Chemicals

Flammable materials, lubricants, acids and any other aggressive material should not be kept in the storage. Belts elastomers may be affected or even irreparably damaged by such agents.

CLEANING

Never clean V-belts. If you need, for any reason, to clean belts use a dry towel or one soaked with a glycerine/alcohol mixture in the ratio 1:10. Other solvents such as petrol or benzene must not be used. Sharp-edged objects must not be used for cleaning V-belts.

BELT INSTALLATION

To ensure a long service life and high performances, it is important to design correctly the application and to take care of correct installation, maintenance and storage of the belt.

A drive must be designed in such a way to make proper provision for both installation and tensioning of the V-belts. For this purpose a take-up device is necessary; a slide adjuster on the motor is recommended to simplify installation and permit optimum tensioning.

Table 5 (see belt family pages) provides minimum variation of center distance permitted for installation and tensioning of the belts.

Take up allowance Х Installation allowance У Center distance

Furthermore, the following rules must always be observed:

- 1) check the alignment of the drive pulleys;
- 2) make sure that the flanks of the grooves are clean;
- 3) adjust the tensioner to stretch the belts sufficiently;
- 4) check the tension (see following section);
- 5) check correct diameter for tensioning pulley;
- 6) protect belt from oil and other chemicals;
- 7) when installing belts, slack off tensioner and avoid using tools or implements which may damage the belts.

Pulleys with large diameters increase belt life. They must be statically balanced up to the speed of 30 m/s and dynamically balanced over this value.

TENSIONING SYSTEM

The satisfactory performance of a transmission equipped with V-belts depends on the correct fitting tension. It is therefore necessary to proceed in the following way, using the slide adjuster:

Belt tension control by deflection method

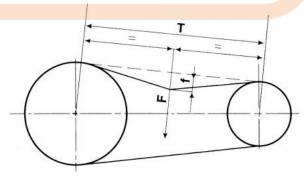
The approximate relation among deflection force, belt deflection and belt tension is given by:

$$T_s \simeq \frac{f \bullet t}{4 \bullet f}$$

Imposing a belt deflection

$$f = \frac{t}{64}$$

the deflection force should be in the range


$$F_{min} \simeq F' = \frac{T_s}{16}$$

$$F_{min} \simeq F' = \frac{T_s}{16} \qquad \qquad F_{max} \simeq F'' = \ \frac{1,5 \, \bullet \, T_s}{16}$$

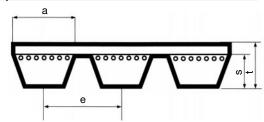
Belt tension control by vibration method

Belt vibration frequency: $F_r^2 = \frac{T_s}{4 \cdot m \cdot t^2}$

Symbol	Unit	Definition
F,	Hz	natural frequency of belt
m	kg/m	specific belt mass
t	m	free span length
T _s	N/strand	static belt tension (see page 9)

where:

Symbol	Unit	Definition
F	Ν	perpendicular deflection force
f	mm	belt deflection
t	mm	free span length
T _s	N/strand	static belt tension (see page 9)


BANDED V-BELTS

BELT CHARACTERISTICS

section	RA	RB	RC	RSPZ	RSPA	RSPB	RSPC	R3V	R5V	R8V	R3VX	R5VX	
a (mm)	13	17	22	9.7	12.7	16.3	22	9	15	25	9	15	
s (mm)	8	11	14	8	10	13	18	8	13	23	8	13	
t (mm)	10	13	16	10,5	12,5	15,5	22,5 25,5	10	15	25,5	10	15	
e (mm ± 0,3)	15	19	25.5	12	15	19	25,5	10,3	17,5	28,6	10,3	17,5	
pitch length - internal	00	40	00	00	47	C1	00	01	E 4	100			
length = i (mm)	33	43	62	39	47	61	86	31	54	103			
working temperature							/ +80°C						
relevant standards		ASAE S 211.4 - ISO 8419											
materials	CR / SBR blend - polyester cord												

Pluriband are special belts capable of transmiting very high loads. The structure is made to be equivalent in performances to a number of corresponding V-belts: a Pluriband A47-1200-5 has the same performance of 5 A47 belts working in parallel. The procedure for engineering a system using Pluriband belts is the same as described in the technical calculation chapter, using the same performance data as the corresponding V-belt profile.

8 A

RA SECTION

	Internal		Internal		Internal		Internal		Internal		Internal
Code	length	Code	length	Code	length	Code	length	Code	length	Code	length
	LI (mm)		LI (mm)		LI (mm)		LI (mm)		LI (mm)		LI (mm)
RA 47	1200	RA 59	1500	RA 75	1900	RA 100	2540	RA 128	3250	RA 187	4750
RA 51	1300	RA 64	1625	RA 79	2000	RA 104	2650	RA 144	3658	RA 197	5000
RA 56	1422	RA 67	1700	RA 88	2240	RA 112	2845	RA 158	4000	RA 210	5334
RA 57	1450	RA 71	1800	RA 98	2500	RA 120	3048	RA 167	4250	RA 217	5477

7RB SECTION

i		Internal		Internal		Internal		Internal		Internal		Internal		Internal
	Code	length	Code	length	Code	length	Code	length	Code	length	Code	length	Code	length
		LI (mm)	_	LI (mm)		LI (mm)								
	RB 70	1778	RB 82	2083	RB 93	2362	RB 106	2692	RB 127	3226	RB 147	3734	RB 167	4242
	RB 71	1803	RB 83	2108	RB 94	2388	RB 107	2718	RB 128	3251	RB 148	3759	RB 168	4267
	RB 72	1829	RB 84	2134	RB 95	2413	RB 108	2743	RB 130	3302	RB 151	3835	RB 173	4394
	RB 73	1854	RB 85	2159	RB 96	2438	RB 110	2794	RB 131	3327	RB 152	3861	RB 175	4445
	RB 74	1880	RB 86	2184	RB 97	2464	RB 112	2845	RB 132	3353	RB 154	3912	RB 177	4496
	RB 75	1905	RB 87	2210	RB 98	2489	RB 114	2896	RB 133	3378	RB 157	3988	RB 180	4572
	RB 76	1930	RB 88	2235	RB 99	2515	RB 115	2921	RB 134	3404	RB 158	4013	RB 186	4724
	RB 78	1981	RB 89	2261	RB 100	2540	RB 116	2946	RB 135	3429	RB 161	4089	RB 188	4775
	RB 79	2007	RB 90	2286	RB 102	2591	RB 118	2997	RB 136	3454	RB 162	4115	RB 192	4877
	RB 80	2032	RB 91	2311	RB 104	2642	RB 120	3048	RB 140	3556	RB 163	4140	RB 195	4953
	RB 81	2057	RB 92	2337	RB 105	2667	RB 124	3150	RB 144	3658	RB 165	4191	RB 197	5004

RC SECTION

Code	Internal length LI (mm)												
RC 98	2489	RC 104	2642	RC 112	2845	RC 128	3251	RC 142	3607	RC 160	4064	RC 180	4572
RC 99	2515	RC 105	2667	RC 115	2921	RC 130	3302	RC 144	3658	RC 165	4191	RC 195	4953
RC 100	2540	RC 106	2692	RC 118	2997	RC 134	3404	RC 148	3759	RC 166	4216	RC 210	5334
RC 101	2565	RC 108	2743	RC 120	3048	RC 136	3454	RC 153	3886	RC 168	4267		
BC 102	2591	BC 110	2794	BC 124	3150	RC 140	3556	BC 158	4013	BC 173	4394		

RSPZ SECTION

Code	Pitch length LW (mm)										
RSPZ 1400	1400	RSPZ 1700	1700	RSPZ 2000	2000	RSPZ 2360	2360	RSPZ 2800	2800	RSPZ 3350	3350
RSPZ 1500	1500	RSPZ 1800	1800	RSPZ 2120	2120	RSPZ 2500	2500	RSPZ 3000	3000	RSPZ 3550	3550
RSP7 1600	1600	RSP7 1900	1900	RSP7 2240	2240	RSP7 2650	2650	BSP7 3150	3150		

7RSPA SECTION

Code	Pitch length LW (mm)												
	` ,	RSPA 1700	1700	RSPA 2000	2000	RSPA 2360	2360	RSPA 2800	2800	RSPA 3350	3350	RSPA 4000	4000
RSPA 1500	1500	RSPA 1800	1800	RSPA 2120	2120	RSPA 2500	2500	RSPA 3000	3000	RSPA 3550	3550	RSPA 4250	4250
RSPA 1600	1600	RSPA 1900	1900	RSPA 2240	2240	RSPA 2650	2650	RSPA 3150	3150	RSPA 3750	3750	RSPA 4500	4500

BANDED V-BELTS - Pluriband

13 SPB SECTION

	_												
	Pitch												
Code	length												
	LW (mm)												
RSPB 2000	2000	RSPB 2500	2500	RSPB 3150	3150	RSPB 4000	4000	RSPB 5000	5000	RSPB 6300	6300	RSPB 8000	8000
RSPB 2120	2120	RSPB 2650	2650	RSPB 3350	3350	RSPB 4250	4250	RSPB 5300	5300	RSPB 6700	6700		
RSPB 2240	2240	RSPB 2800	2800	RSPB 3550	3550	RSPB 4500	4500	RSPB 5600	5600	RSPB 7100	7100		
RSPB 2360	2360	RSPB 3000	3000	RSPB 3750	3750	RSPB 4750	4750	RSPB 6000	6000	RSPB 7500	7500		

18 SPC

RSPC SECTION

	Pitch		Pitch		Pitch								
Code	length LW (mm)	Code	length LW (mm)	Code	length LW (mm)								
RSPC 3000	3000	RSPC 3750	3750	RSPC 4750	4750	RSPC 6000	6000	RSPC 7500	7500	RSPC 9500	9500	RSPC 11800	11800
RSPC 3150	3150	RSPC 4000	4000	RSPC 5000	5000	RSPC 6300	6300	RSPC 8000	8000	RSPC 10000	10000	RSPC 12500	12500
RSPC 3350	3350	RSPC 4250	4250	RSPC 5300	5300	RSPC 6700	6700	RSPC 8500	8500	RSPC 10600	10600		
RSPC 3550	3550	RSPC 4500	4500	RSPC 5600	5600	RSPC 7100	7100	RSPC 9000	9000	RSPC 11200	11200		

R3V SECTION

Code	Nominal external length (mm)	Code	Nominal external length (mm)	Code	Nominal external length (mm)	Code	Nominal external length (mm)						
R3V 335	850	R3V 425	1080	R3V 530	1345	R3V 670	1700	R3V 850	2160	R3V 1060	2690	R3V 1320	3350
R3V 355	900	R3V 450	1145	R3V 560	1420	R3V 710	1800	R3V 900	2290	R3V 1120	2840	R3V 1400	3550
R3V 375	950	R3V 475	1205	R3V 600	1525	R3V 750	1900	R3V 950	2410	R3V 1180	3000		
R3V 400	1015	R3V 500	1270	R3V 630	1600	R3V 800	2030	R3V 1000	2540	R3V 1250	3180		

R5V SECTION

	Nominal		Nominal		Nominal		Nominal		Nominal		Nominal		Nominal
Code	external	Code	external	Code	external	Code	external	Code	external	Code	external	Code	external
	length (mm)		length (mm)		length (mm)		length (mm)		length (mm)		length (mm)		length (mm)
R5V 500	1270	R5V 670	1700	R5V 900	2290	R5V 1250	3180	R5V 1700	4320	R5V 2240	5690	R5V 3000	7620
R5V 530	1345	R5V 710	1800	R5V 950	2410	R5V 1320	3350	R5V 1800	4570	R5V 2360	6000	R5V 3150	8000
R5V 560	1420	R5V 750	1900	R5V 1000	2540	R5V 1400	3550	R5V 1900	4830	R5V 2500	6350	R5V 3350	8500
R5V 600	1525	R5V 800	2030	R5V 1120	2840	R5V 1500	3810	R5V 2000	5080	R5V 2650	6730	R5V 3550	9000
DEVICOO	1000	DEVLOCA	0400	DEV/4400	0000	DEV/4000	4000	DEV/0400	E000	DEV/ 0000	7400		

R8V SECTION

Code	Nominal external length (mm)												
R8V 1000	2540	R8V 1320	3350	R8V 1800	4570	R8V 2360	6000	R8V 3150	8000	R8V 4250	10800	R8V 6000	15250
R8V 1060	2690	R8V 1400	3550	R8V 1900	4830	R8V 2500	6350	R8V 3350	8500	R8V 4500	11430		
R8V 1120	2840	R8V 1500	3810	R8V 2000	5080	R8V 2650	6730	R8V 3550	9000	R8V 4750	12060		
R8V 1180	3000	R8V 1600	4060	R8V 2120	5380	R8V 2800	7100	R8V 3750	9500	R8V 5000	12700		
R8V 1250	3180	R8V 1700	4320	R8V 2240	5690	R8V 3000	7620	R8V 4000	10160	R8V 5600	14200		

R3VX SECTION

	Nominal		Nominal		Nominal		Nominal		Nominal		Nominal		Nominal
Code	external	Code	external	Code	external	Code	external	Code	external	Code	external	Code	external
	length (mm)		length (mm)		length (mm)		length (mm)		length (mm)		length (mm)		length (mm)
R3VX 250	630	R3VX 335	850	R3VX 450	1145	R3VX 600	1525	R3VX 800	2030	R3VX 1060	2690	R3VX 1400	3550
R3VX 265	670	R3VX 355	900	R3VX 475	1205	R3VX 630	1600	R3VX 850	2160	R3VX 1120	2840		
R3VX 280	710	R3VX 375	950	R3VX 500	1270	R3VX 670	1700	R3VX 900	2290	R3VX 1180	3000		
R3VX 300	760	R3VX 400	1015	R3VX 530	1345	R3VX 710	1800	R3VX 950	2410	R3VX 1250	3180		
R3VX 315	800	R3VX 425	1080	R3VX 560	1420	R3VX 750	1900	R3VX 1000	2540	R3VX 1320	3350		

R5VX SECTION

	Nominal		Nominal		Nominal		Nominal		Nominal		Nominal
Code	external	Code	external	Code	external	Code	external	Code	external	Code	external
	length (mm)		length (mm)		length (mm)		length (mm)		length (mm)		length (mm)
R5VX 500	1270	R5VX 630	1600	R5VX 850	2160	R5VX 1060	2690	R5VX 1320	3350	R5VX 1700	4320
R5VX 530	1345	R5VX 670	1700	R5VX 900	2290	R5VX 1120	2840	R5VX 1400	3550	R5VX 1800	4570
R5VX 560	1420	R5VX 710	1800	R5VX 950	2410	R5VX 1180	3000	R5VX 1500	3810	R5VX 1900	4830
R5VX 600	1525	R5VX 800	2030	R5VX 1000	2540	R5VX 1250	3180	R5VX 1600	4060	R5VX 2000	5080

USEFUL FORMULAS AND CONVERSION TABLE

SPEED

$$v = \frac{d_1 \cdot n_1}{19100}$$

$$n_1 = \frac{v \cdot 19100}{d_1}$$
 $n_1 = \frac{v \cdot 19100}{n_1}$

$$n_1 = \frac{v \cdot 19100}{n_1}$$

peripheral speed [m/s] v: rotation speed [RPM] pulley diameter [mm]

FORCE AND TORQUE

$$F_u = \frac{19,1 \cdot 10^6 \cdot P}{d_1 \cdot n_1}$$
 $F_u = \frac{2000 \cdot m}{d_1}$ $F_u = \frac{P \cdot 10^3}{d_1}$

$$F_u = \frac{2000 \cdot m}{d_x}$$

$$F_u = \frac{P \cdot 10^3}{d_1}$$

$$M_t = \frac{P \bullet 9550}{n_1} \qquad \qquad M_t = \frac{F_u \bullet d_1}{2000} \qquad \qquad M_t = \frac{P \bullet d_1}{2 \bullet v}$$

$$M_t = \frac{F_u \cdot d_1}{2000}$$

$$M_t = \frac{P \cdot d_1}{2 \cdot V}$$

Fu: peripheral force [N] Mt: drive torque [Nm]

P: power [kW]

n1: rotation speed [RPM] d1: pulley diameter [mm] v: peripheral speed [m/s]

POWER

$$P = \frac{F_u \cdot d_1 \cdot n_1}{19,1 \cdot 10^6}$$

$$P = \frac{M_t \cdot n_1}{9550}$$

$$P = \frac{F_u \cdot V}{1000}$$

P: power [kW]

Fu: peripheral force [N]

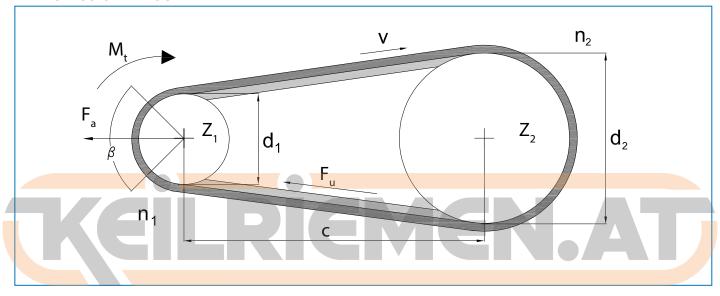
Mt: drive torque [Nm] n1: rotation speed [RPM]

d1: pulley diameter [mm]

To convert from	to	multiply by
CV	HP	0,9863201
CV	kcal/h	63,24151
CV	W	735,4988
CV	kW	0,7354988
CV	$kgf \Leftrightarrow m/s$	75
CV	lbf ⇔ ft/s	542,476
HP	CV	1,01387
HP	kcal/h	641,1865
HP	W	745,6999
HP	kW	0,7456999
HP	kgf ⇔ m/s	76,04022
HP	lbf ⇔ ft/s	550
in	m	0,0254
in	cm	2,54
in	mm	25,4
in	ft	0,083
in ²	m²	0,00064516
in ²	cm ²	6,4516
in ²	mm²	645,16
in ²	ft ²	0,006944444
in ³	m^3	1,63871·10-5
in ³	cm³	16,38706
in ³	mm³	16387,06
in ³	ft³	0,000578704

To convert from	to	multiply by
J	$CV \Leftrightarrow h$	3,77673·10-7
J	HP ⇔ h	3,72506·10-7
J	kWh	2,77778·10-7
kg	lb	2,204623
kgf	N	9,80665
kgf	lbf	2,204623
kgf ⇔ m/s	CV	0,01333333
kgf ⇔ m/s	W	9,80665
kgf ⇔ m/s	kW	0,00980665
kW	CV	1,359622
kW	kcal/h	859,8452
kW	W	1000
kW	kgf ⇔ m/s	101,9716
kW	lbf ⇔ ft/s	737,5621
lb	kg	0,4535924
lb	kgf	0,4535924
lb	N	4,448222
N	kgf	0,1019716
N	lbf	0,2248089
W	CV	0,001359622
W	HP	0,001341022
W	kcal/h	0,8598452
W	kW	0,001
W	kgf ⇔ m/s	0,1019716
W	lbf ⇔ ft/s	0,7375621

NOTES	
KEILRIEMEN.	


DATA SHEET FOR CALCULATION

CUSTOMER DATA

				Date//
Company Name				
Address		Zip Code		
City		Country		
Customer Name/Surname				
Office	Tel	Fax		
e-mail				
Application field			New	Existing*
Volume:			INGW	Lasting
				*Please enclose to this request all the details of
				the existing application (competitor's belt,
				current data, etc)

POWER TRANSMISSION

TRANSMISSION LAYOUT

_	 		
ſ			
I			
l			
l			
ı			
ı			
l			
l			
l			
ı			
ı			
ı			
ı			
ı			
1			

MOTOR:	NFORM/ :	ATION		
\square AC	\Box DC	☐ Soft Start	☐ Inverte	r
Power: _				
Speed: _				
Accelera	tion:			
Working	time: □ <	8h 🗆 From 8h	up to 16h	□ >16h

If layout is different please sketch it below

APPLICATION:

AFFLICATION.
Driver pulley diameter:
Driven pulley diameter:
Center distance:
Minimum safety factor required:
Are there any size limitation? ☐ Yes ☐ No
(if yes please indicate):
diameter (min. and/or max.):
width (min. and/or max.):
center distance: (min_and/or max.)